Bugsering med motorfly er en populær og ganske sikker startmetode. Men den aerodynamiske interaktion mellem motor- og svævefly kan i visse tilfælde give anledning til kontrolproblemer for den stakkels pilot i svæveflyet. NORDIC GLIDING analyserer her et problem.
Flyslæb, her under Uppsala Masters på Sundbro flyveplads.
Dette er ikke nogen sjælden situation: Under flyslæbet rapporterer svævefly-piloten pludseligt over radioen, at han næsten er stallet, har mistet kontrollen og, at slæbeflyet skal øge hastigheden. Stemmen i radioen afslører det høje stressniveau.
Piloten på slæbeflyet reagerer ofte ved at øge farten med det samme, men andre gange åbnes op for en meningsløs diskussion om rigtigheden af den angivne hastighed.
På den anden side, vi ved alle, at et moderne svævefly selv med fuld vandballast flyver inden Pawneen er klar (dvs. ved en lavere hastighed), og det virker derfor umuligt at et svævefly kan flyves ind i ukontrollabelt ”flight regime”, da Pawneen flyver langt hurtigere end svæveflyvets stallhastighed.
Mange af disse incidents tilskrives efterfølgende dårlig flyvetræning eller lille flyveerfaring hos svæveflypiloten.
Selvfølgelig er det også sket for mig under en start med en Janus kort før udkobling i stor højde. Jeg har altså derfor førstehånds-erfaring med hvor traumatiserende det er at have næsten helt uvirksomme krængeror (skevroder, red.) og et højderor der er totalt ineffektivt i forhold til at positionere flyet i den korrekte højde i forhold til slæbeflyet.
Symptomerne ligner et dybt stall, men den indikerede hastighed er mindst 15 km/t (eller endog 40 km/t) højere end for mindstefarten ved 1 g; dog med den alvorlige forskel, at man ikke kan få kontrol over situationen ved bare at føre styrepinden frem. Man kan i bedste fald koble ud, såfremt man ikke er i for lav højde.
Normalt kan man diskutere disse event efterfølgende, og ofte er slæbepilotens svar, at farten var markant over minimum, eller også siger instruktøren, at det kan have været turbulens forårsaget af propellen, hvilket man ikke skal frygte.
Den foreslåede konsensus-løsning er altid korrekt, “OK, næste gang skal vil bugsere ned større hastighed”, men årsagen til det frygtede og misforståede fænomen er ikke et produkt af propellen.
Den spiralformede slipstrøm fra propellen følger hovedsageligt slæbeflyet og svinger nedad flere meter bag slæbeflyet. Det store turbulensområde som produceres af hvilket som helst fly (i dette tilfælde slæbeflyet) er meget større – både horisontalt og vertikalt – end den føromtalte slipstrøm fra propellen.
I de senere år har nogle af de nyeste svævefly med større spændvidde været involveret i alvorlige ulykker under flyslæb med tab af kontrol resulterende i udkobling og nogle gange med decideret mislykket nødlanding. Jeg er ikke bekendt med fatale ulykker, men væsentlig person – og materielskade har været resultatet. Som følge heraf har en svævefly-producent fx øget minimumshastigheden for flyslæb på en af typerne.
Synk, Indstillingsvinkel, Spændvidde
Finder der overhovedet en synkende luftstrømning bag et luftfarttøj? Ja, utvivlsomt. Vi er gennem tiden blevet konfronteret med forkerte aerodynamiske teorier (forenklinger af trykfordeling, forkert tolkning af Bernoulli osv), men det er helt sikkert, at et flyvende objekt producerer en synkende luftmasse.
Videoen herover viser et tungt passagerfly som passerer et skydække og producerer en bred nedsynkende luftmasse. En fin visualisering af denne bevægelse i luften. Hvordan skulle man ellers forklare dette fænomen? Man ser dog tydeligt, hvordan (hur, red.) luftstrømmen gennem længere tid synker bag flyet med næsten konstant bredde. Dette er også en god visualisering af randhvirvlerne (som bidrager med stigende luft).
Og hvad med selve stallets mekanik? Afhænger det ikke udelukkende af indfaldsvinklen (angle of attack)? Jo, naturligvis. Den øgning i vægt forårsaget af G-påvirkning (fx under sving) kræver også en større indfaldsvinkel og større input på højderoret.
På videoen her ser man den vandrette luftstrøm, som rammer vingens forkant og ændrer flow. Den grafiske repræsentation er eksakt for flyvning i helt stabil luft; men hvis luftmassen bevæger sig nedad, skal linjerne ændres i vinkel: Derfor skal indfaldsvinklen på vingeforkanten som møder nedadgående luft være større for at kompensere, og dermed opnå den samme indfaldsvinkel (og samme opdriftskoefficient) i forhold til situationen af stabil (vandret) luft.
Med andre ord: I forhold til en flyvepladsreference, vil vingen have en større indfaldsvinkel, men i forhold til luften vil indfaldsvinklen være uændret. Under flyvningen er det som bekendt piloten som styrer flyet ved hjælp af styrepinden, men nok uden nogen direkte analyse eller ”feel” med indfaldsvinklen. Holder svæveflyvet korrekt position bag ”Pawneen”, så fungerer flyvningen som ønsket.
Men hvor kraftig er vinklen på den synkende luft bag et fly? Bag et gennemsnitligt slæbefly, tx Pawnee, kan man observere mellem 2 og 5 graders negativ vinkel på luftstrømmen.
Randhvirvlen fra et landbrugsfly (meget ligt vores Pawnee).
Opdriftsfordeling på et svævefly under flyvning. Den del af vingen med den største opdrift gennemflyver den nedadsynkende luftstrøm produceret af slæbeflyet med kortere spændvidde.
Så lad os se, hvor opdriften produceres: den er typisk fordelt langs spændvidden, med en et høj-løft område, der omfatter fra vingeroden op til omkring halvdelen eller to tredjedele af spændvidden.
Mod enderne af vingespidserne er løftet reduceret til næsten nul, hvilket er ansvarlig for den den såkaldte “elliptiske fordeling”, der gør det muligt at minimere den inducerede modstand på grund af mindre trykforskel mellem toppen og bunden af vingen og dermed forhindre større produktion af randhvirvler (wake turbulence).
Vingegeometrien udviser typisk en progressiv indsnævring i korden (vingens dimension fra for – til bagkant) mod vingetipperne (elipseform), og dermed også en reduktion i løftproducerende vingeareal nær tipperne.
Og nu, den sidste relevante observation, som kan være nøglen til hele problemet: Slæbeflyet har en kortere spændvidde end svæveflyet. Under flyslæb bevæger svæveflyets vinge sig derfor ikke gennem en homogen luftmasse. En stor del af vingen befinder sig i den nedadgående luftstrøm produceret af Pawneen og giver derfor mindre løft.
Resten af vingen mod tipperne er i stabil luft, eller potentielt i stigende luft fra Pawneens randhvirvler og har derfor en større indfaldsvinkel. Krængerorene sidder nær vingespidserne, og hvis flyet er konstrueret med flaperons, afhænger flyets rollperformance/manøvredygtighed betydeligt at den ydre del af flaperonen.
Det er efterhånden klart, at den faktiske indfaldsvinkel ikke er konstant, men i stedet kan variere dramatisk langs spændvidden! Det er derfor langt fra umuligt at stalle dele af vingen ved at overskride den kritiske indfaldsvinkel under et flyslæb hvor man prøver at holde sig bag slæbeflyet. Det er bestemt ikke en ønskeværdig situation hvad angår flyets manøvredygtighed.
Afslutningsvis kan man sige, at den dårlige manøvredygtig der kan opleves under flyslæb er et resultat af forskellen på spændvidde mellem slæbefly og svævefly – det er ikke bare åbenklasse, vi taler om. Også piloter på 15 m- og standardklassefly har oplevet problemet.
Spændvidde og tip-stall
Et stall, som vi alle kan prøve under flyvning, medfører for alle typer af fastvingede fly tab af løft forårsaget af en overskridelse af den kritiske indfaldsvinkel i vingerodens område.
De aerodynamiske reaktioner omkring vingeroden er i virkeligheden den vigtigste kilde til “buffeting” – det man genkender på vibrationer i flyets styrepind. Det er resultatet af højderoret flyver i et forstyrret flow fra vingeroden.
Sikkerhed i designet Flykonstruktørerne designer normalt flytyperne, så vingeprofilen staller ved vingeroden og ikke ved tipperne (hvor krængerorene befinder sig) og dermed skaber en farlig ustabilitet og potentielt uoverskuelig situation.
Mange vinger er forsætligt konstrueret med en mindre indfaldsvinkel ved tipperne for at fjerne muligheden for et tip-stall. På et svævefly er denne aerodynamiske ”vridning” et lille acceptabelt kompromis for sikkerheden. (ASK 21 er et fint eksempel på markant aerodynamisk vridning. Selv med styrepinden i maven og fuldt stall, er der god krængerorsvirkning. Under mere normale indfaldsvinkler giver dette design lidt mere modstand, men sikkerhedsfordelene er åbenlyse, red.)
Dette skal understreges, at tip-stall ikke er en ”normal-oplevelse” for svævefly og for svævefly-piloter. Under flyslæb betyder den betydelige forskel i spændvidde mellem slæbe- og svævefly, at vingespidserne på svæveflyet skal arbejde i en stabil eller endda opadgående luftstrøm, som om designeren havde bygget vingetipperne med en indstillingsvinkel højere end hvad sund fornuft ville diktere.
Derfor fungerer krængerorene i nærheden af – eller overskrider den kritiske indfaldsvinkel (og taber deraf deres virkning). Jo stærkere luften synker bag Pawneen, jo stærkere effekt.
Når fænomenet opstår, kan svæveflyve-piloten ikke reagere som vanligt og føre styrepinden frem, da flyet dermed straks ville komme alt for lavt under slæbeflyet, hvis han eller hun ikke kobler omgående. I lav højde kan en udkobling være en dårlig idé.
I dette tilfælde kan man prøve at holde vingerne vandret og kommunikere via radio med kommando om at øge hastigheden. Det er dog meget bedre at aftale minimumshastighed med slæbepiloten før start og forberede en klar og utvetydig kommunikation (bare det at sige “hastighed” giver plads til fejlfortolkning, fordi squelchen kan risikere at cutte i transmissionen).
Skærpende omstændigheder
Her kan man nævne stærk termik, kort slæbeline, stor forskel på spændvidde mellem slæbefly og svævefly. Alt dette har negativ effekt på styrevilligheden i svæveflyet.
Slæbeflyet producerer mere synkende luft “downwash”) desto tungere det er, jo langsommere det flyver og jo kortere spændvidde det har. Faktisk er motorsvævefly med deres store spændvidde og lavere masse, umiddelbart bedre til at slæbe de store svævefly også ved relativt lav hastighed. Dog skal man tage i betragtning deres dårligere acceleration i starten.
Dog gælder dette for alle svævefly under slæb: et længere slæbetov flytter svæveflyet ud i et område, hvor den synkende luft ikke er så kraftig (33 meter længere slæbetov svarer til omkring et sekund større horisontal separation ved 120 km/t). Slæbetov som kortere end 30 meter i længden er almindeligt anvendt i de østeuropæiske lande, hvor det forværres af populære slæbefly som den langsomme og tunge Wilga.
Jo tungere slæbefly, jo større turbulens. Her skal man tænke på at ikke slæbe med mere vægt end nødvendigt – fx med en co-pilot eller tanke unødigt meget benzin (selvfølgelig nok til en sikker operation).
Svævefly med radikale vingedesigns er ofte karakteriseret ved en høj vingebelastning, stor spændvidde og pilform: Vingespidser som er trukket bagud giver fine karakteristika ved lav hastighed og under termikflyvning samt reducerer den inducerede modstand.
Hvis disse tipper pludselig skal levere en større løftekraft, enten ved at øge indfaldsvinklen frivilligt eller som følge af, at flyvningen går gennem en ikke-homogen luftmasse (fx den synkende luft bag slæbeflyet), vandrer trykcentret tilbage og giver piloten den følelse (känsla, red.) af, at næsen ønsker at synke.
Ekstreme designs
Jeg har talt om denne teori med mange mennesker, før jeg har skrevet denne artikel. Blandt dem også en velkendt designer af vingeprofiler.
Han fortalte mig om sin erfaring med en prototype på et canard-svævefly produceret af Grob (karakteriseret ved et stort højderor på næsen i stedet for den konventionelle placering på halebommen), som uventet havde demonstreret en farlig flyvekarakteristika under testflyvningen.
En grundig analyse viste efterfølgende, at hvirvlerne (vortex), der genereres af af canard-vingen dækkede vingespidserne på den bagerste hovedvinge med en stigende vektor på strømningen. Derved blev flyets krængeror pludselig ineffektive og man tabte kontrollen over flyets længdeakse. Ideen blev hurtigt opgivet!
Yderligere beviser kommer fra test af den flyvende vinge (Nurflügler) SB-13 bygget af Akaflieg Braunschweig. Under den første start i flyslæb havde SB 13 præcist roteret og havde løftet sig fra banen.
Pludselig opstod der et uventet højderorsinput som ikke var kommanderet af piloten som dog ikke havarede. Den aerodynamiske analyse har siden klargjort, at den synkende strømning fra slæbeflyet havde påvirket den centrale del af vingen (rodzonen), hvilket havde reduceret indfaldsvinklen og ændret markant på vingens distribution af løft med større vægt mod tipperne. På grund af flyets markant pileform flyttede trykcentret sig radikalt og forårsagede ”et drop” af næsepartiet.
Det er efterfølgende et meget begrænset antal piloter som har fløjet SB-13 og der anvendes bare et meget langt slæbetov.
Den lille forening fejede store milliard-virksomheder af banen, da publikumsprisen i går aftes blev uddelt på årets Kortdage arrangeret af GEOFORUM i Aalborg.
https://nordicgliding.com/wp-content/uploads/2021/11/17-udvalgt.jpg6301200Jens Trabolthttps://nordicgliding.com/wp-content/uploads/2020/02/nordic-gliding-logo-invert.jpgJens Trabolt2021-11-25 11:22:232021-11-26 08:24:24Condor Danmark vinder pris for landskab
Med de succesfulde JS1 og JS3 har sydafrikanske Jonker taget en stor del af markedet for high-performance 1-sædede fly. De tyske fabrikanter har dog haft markedet for selvstartende fly for sig selv. Men nu er Jonker Sailplanes klar til produktion af den Solo-motoriserede 18/21 m-variant
https://nordicgliding.com/wp-content/uploads/2020/11/3W4A7572-udvalgt-1.jpg6301200Jens Trabolthttps://nordicgliding.com/wp-content/uploads/2020/02/nordic-gliding-logo-invert.jpgJens Trabolt2020-11-25 15:43:532020-12-14 12:40:31JS2 Revenant – bag kulisserne
Norske Arne Martin Güettler og danske Tim Madsen var blandt de i alt 20 deltagere, som fløj i det virtuelle Virtual Sailplane Grand Prix - World Final 2021. Det var det første FAI-anerkendte e-Sport-mesterskab nogensinde.
https://nordicgliding.com/wp-content/uploads/2021/10/The-regatta-start-was-intense-with-20-gliders-abreast-udvalgt.jpg6301200Jens Trabolthttps://nordicgliding.com/wp-content/uploads/2020/02/nordic-gliding-logo-invert.jpgJens Trabolt2021-10-06 13:40:312023-02-09 09:27:13Virtuelt race side om side med virkeligheden
Nordic Gliding bruger cookies til at forbedre din oplevelse af websitet. Du accepterer vores cookies, hvis du fortsætter med at bruge nordicgliding.com Cookie indstillingerOK
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.